生物數(shù)學的分支學科較多,從生物學的應用去劃分,有數(shù)量分類學、數(shù)量遺傳學、數(shù)量生態(tài)學、數(shù)量生理學和生物力學等;從研究使用的數(shù)學方法劃分,又可分為生物統(tǒng)計學、生物信息論、生物系統(tǒng)論、生物控制論和生物方程等分支。這些分支與前者不同,它們沒有明確的生物學研究對象,只研究那些涉及生物學應用有關的數(shù)學方法和理論。
生物數(shù)學具有豐富的數(shù)學理論基礎,包括集合論、概率論、統(tǒng)計數(shù)學、對策論、微積分、微分方程、線性代數(shù)、矩陣論和拓撲學,還包括一些近代數(shù)學分支,如信息論、圖論、控制論、系統(tǒng)論和模糊數(shù)學等。
由于生命現(xiàn)象復雜,從生物學中提出的數(shù)學問題往往十分復雜,需要進行大量計算工作。因此,計算機是研究和解決生物學問題的重要工具。然而就整個學科的內(nèi)容而論,生物數(shù)學需要解決和研究的本質(zhì)方面是生物學問題,數(shù)學和電腦僅僅是解決問題的工具和手段。因此,生物數(shù)學與其他生物邊緣學科一樣通常被歸屬于生物學而不屬于數(shù)學。
生命現(xiàn)象數(shù)量化的方法,就是以數(shù)量關系描述生命現(xiàn)象。數(shù)量化是利用數(shù)學工具研究生物學的前提。生物表現(xiàn)性狀的數(shù)值表示是數(shù)量化的一個方面。生物內(nèi)在的或外表的,個體的或群體的,器官的或細胞的,直到分子水平的各種表現(xiàn)性狀,依據(jù)性狀本身的生物學意義,用適當?shù)臄?shù)值予以描述。
數(shù)量化的實質(zhì)就是要建立一個集合函數(shù),以函數(shù)值來描述有關集合。傳統(tǒng)的集合概念認為一個元素屬于某集合,非此即彼、界限分明?墒巧锝绱嬖谥罅拷缦薏幻鞔_的模糊現(xiàn)象,而集合概念的明確性不能貼切地描述這些模糊現(xiàn)象,給生命現(xiàn)象的數(shù)量化帶來困難。1965年扎德提出模糊集合概念,模糊集合適合于描述生物學中許多模糊現(xiàn)象,為生命現(xiàn)象的數(shù)量化提供了新的數(shù)學工具。以模糊集合為基礎的模糊數(shù)學已廣泛應用于生物數(shù)學。
數(shù)學模型是能夠表現(xiàn)和描述真實世界某些現(xiàn)象、特征和狀況的數(shù)學系統(tǒng)。數(shù)學模型能定量地描述生命物質(zhì)運動的過程,一個復雜的生物學問題借助數(shù)學模型能轉(zhuǎn)變成一個數(shù)學問題,通過對數(shù)學模型的邏輯推理、求解和運算,就能夠獲得客觀事物的有關結論,達到對生命現(xiàn)象進行研究的目的。
比如描述生物種群增長的費爾許爾斯特-珀爾方程,就能夠比較正確的表示種群增長的規(guī)律;通過描述捕食與被捕食兩個種群相克關系的洛特卡-沃爾泰拉方程,從理論上說明:農(nóng)藥的濫用,在毒殺害蟲的同時也殺死了害蟲的天敵,從而常常導致害蟲更猖獗地發(fā)生等。
還有一類更一般的方程類型,稱為反應擴散方程的數(shù)學模型在生物學中廣為應用,它與生理學、生態(tài)學、群體遺傳學、醫(yī)學中的流行病學和藥理學等研究有較密切的關系。60年代,普里戈任提出著名的耗散結構理論,以新的觀點解釋生命現(xiàn)象和生物進化原理,其數(shù)學基礎亦與反應擴散方程有關。
由于那些片面的、孤立的、機械的研究方法不能完全滿足生物學的需要,因此,在非生命科學中發(fā)展起來的數(shù)學,在被利用到生物學的研究領域時就需要從事物的多方面,在相互聯(lián)系的水平上進行全面的研究,需要綜合分析的數(shù)學方法。
多元分析就是為適應生物學等多元復雜問題的需要、在統(tǒng)計學中分化出來的一個分支領域,它是從統(tǒng)計學的角度進行綜合分析的數(shù)學方法。多元統(tǒng)計的各種矩陣運算,體現(xiàn)多種生物實體與多個性狀指標的結合,在相互聯(lián)系的水平上,綜合統(tǒng)計出生命活動的特點和規(guī)律性。
生物數(shù)學中常用的多元分析方法有回歸分析、判別分析、聚類分析、主成分分析和典范分析等。生物學家常常把多種方法結合使用,以期達到更好的綜合分析效果。
多元分析不僅對生物學的理論研究有意義,而且由于原始數(shù)據(jù)直接來自生產(chǎn)實踐和科學實驗,有很大的實用價值。在農(nóng)、林業(yè)生產(chǎn)中,對品種鑒別、系統(tǒng)分類、情況預測、生產(chǎn)規(guī)劃以及生態(tài)條件的分析等,都可應用多元分析方法。醫(yī)學方面的應用,多元分析與電腦的結合已經(jīng)實現(xiàn)對疾病的診斷,幫助醫(yī)生分析病情,提出治療方案。
系統(tǒng)論和控制論是以系統(tǒng)和控制的觀點,進行綜合分析的數(shù)學方法。系統(tǒng)論和控制論的方法沒有把那些次要的因素忽略,也沒有孤立地看待每一個特性,而是通過狀態(tài)方程把錯綜復雜的關系都結合在一起,在綜合的水平上進行全面分析。對系統(tǒng)的綜合分析也可以就系統(tǒng)的可控性、可觀測性和穩(wěn)定性作出判斷,更進一步揭示該系統(tǒng)生命活動的特征。
在系統(tǒng)和控制理論中,綜合分析的特點還表現(xiàn)在把輸出和狀態(tài)的變化反饋對系統(tǒng)的影響,即反饋關系也考慮在內(nèi)。生命活動普遍存在反饋現(xiàn)象,許多生命過程在反饋條件的制約下達到平衡,生命得以維持和延續(xù)。對系統(tǒng)的控制常?糠答侁P系來實現(xiàn)。
生命現(xiàn)象常常以大量、重復的形式出現(xiàn),又受到多種外界環(huán)境和內(nèi)在因素的隨機干擾。因此概率論和統(tǒng)計學是研究生物學經(jīng)常使用的方法。生物統(tǒng)計學是生物數(shù)學發(fā)展最早的一個分支,各種統(tǒng)計分析方法已經(jīng)成為生物學研究工作和生產(chǎn)實踐的常規(guī)手段。
概率與統(tǒng)計方法的應用還表現(xiàn)在隨機數(shù)學模型的研究中。原來數(shù)學模型可分為確定模型和隨機模型兩大類如果模型中的變量由模型完全確定,這是確定模型;與之相反,變量出現(xiàn)隨機性變化不能完全確定,稱為隨機模型。又根據(jù)模型中時間和狀態(tài)變量取值的連續(xù)或離散性,有連續(xù)模型和離散模型之分。前述幾個微分方程形式的模型都是連續(xù)的、確定的數(shù)學模型。這種模型不能描述帶有隨機性的生命現(xiàn)象,它的應用受到限制。因此隨機模型成為生物數(shù)學不可缺少的部分。
60年代末,法國數(shù)學家托姆從拓撲學提出一種幾何模型,能夠描繪多維不連續(xù)現(xiàn)象,他的理論稱為突變理論。生物學中許多處于飛躍的、臨界狀態(tài)的不連續(xù)現(xiàn)象,都能找到相應的躍變類型給予定性的解釋。躍變論彌補了連續(xù)數(shù)學方法的不足之處,現(xiàn)在已成功地應用于生理學、生態(tài)學、心理學和組織胚胎學。對神經(jīng)心理學的研究甚至已經(jīng)指導醫(yī)生應用于某些疾病的臨床治療。
繼托姆之后,躍變論不斷地發(fā)展。例如塞曼又提出初級波和二級波的新理論。躍變理論的新發(fā)展對生物群落的分布、傳染疾病的蔓延、胚胎的發(fā)育等生物學問題賦予新的理解。
上述各種生物數(shù)學方法的應用,對生物學產(chǎn)生重大影響。20世紀50年代以來,生物學突飛猛進地發(fā)展,多種學科向生物學滲透,從不同角度展現(xiàn)生命物質(zhì)運動的矛盾,數(shù)學以定量的形式把這些矛盾的實質(zhì)體現(xiàn)出來。從而能夠使用數(shù)學工具進行分析;能夠輸入電腦進行精確的運算;還能把來自名方面的因素聯(lián)系在一起,通過綜合分析闡明生命活動的機制。
總之,數(shù)學的介入把生物學的研究從定性的、描述性的水平提高到定量的、精確的、探索規(guī)律的高水平。生物數(shù)學在農(nóng)業(yè)、林業(yè)、醫(yī)學,環(huán)境科學、社會科學和人口控制等方面的應用,已經(jīng)成為人類從事生產(chǎn)實踐的手段。
數(shù)學在生物學中的應用,也促使數(shù)學向前發(fā)展。實際上,系統(tǒng)論、控制論和模糊數(shù)學的產(chǎn)生以及統(tǒng)計數(shù)學中多元統(tǒng)計的興起都與生物學的應用有關。從生物數(shù)學中提出了許多數(shù)學問題,萌發(fā)出許多數(shù)學發(fā)展的生長點,正吸引著許多數(shù)學家從事研究。它說明,數(shù)學的應用從非生命轉(zhuǎn)向有生命是一次深刻的轉(zhuǎn)變,在生命科學的推動下,數(shù)學將獲得巨大發(fā)展。
當今的生物數(shù)學仍處于探索和發(fā)展階段,生物數(shù)學的許多方法和理論還很不完善,它的應用雖然取得某些成功,但仍是低水平的、粗略的、甚至是勉強的。許多更復雜的生物學問題至今未能找到相應的數(shù)學方法進行研究。因此,生物數(shù)學還要從生物學的需要和特點,探求新方法、新手段和新的理論體系,還有待發(fā)展和完善。